6 Top 3D Printing Stories from 2018

Despite the complex political, social and environmental events that have transpired over the course of 2018, the 3D printing industry keeps transforming at a steady pace. Predictions made about the ability of the technology to meet business needs for mass production are ultimately coming true, which explains why six of the top 3D printing stories from this year involve mass manufacturing.

HP’s Metal Jet 3D Printing

Many in the industry have been waiting for metal 3D printing to become less expensive and easier to use, without issues related to repeatability. HP hopes to answer those needs with Metal Jet 3D Printing, which it announced at IMTS this year. Like many of the newer metal 3D printing processes, Metal Jet takes a cue from the metal injection molding (MIM) industry, printing green objects that are subsequently sintered in a furnace.

A metal part 3D printed with Metal Jet technology from HP. (Image courtesy of HP.)

A metal part 3D printed with Metal Jet technology from HP. (Image courtesy of HP.)

Metal Jet uses the same deposition technology found in HP’s Multi Jet Fusion (MJF) technology to 3D print a binder onto a bed of metal powder. It does so with a speed that makes printing batches of up to 50,000 parts more cost-effective than MIM.

The company has a roadmap planned out that already includes a number of interesting customers, including Volkswagen (emissions scandal be damned), Johnson & Johnson (asbestos scandal be damned) and GKN, an important industrial parts manufacturer.

Evolve Additive

Evolve Additive is also in the business of mass additive manufacturing, except with polymers instead of metals. The company was spun out of Stratasys’ research and development program once it had developed its selective toner electrophotographic process (STEP) to a mature state. With STEP, a roller is electrostatically charged and then moved over a polymer powder. The powder is transferred to a conveyor belt, carried to a build area, and fused with the layers below.


Evolve claims that STEP is 50 times faster than the fastest 3D printing technology available, high speed sintering. STEP also requires minimal post-processing, aside from support structure removal using water. Printed components are also said to be isotropic, giving STEP a big advantage over the competition.

Altogether, this primes STEP to be competitive with injection molding at runs of between five and twenty thousand parts, except that injection molding can’t perform mass customization. STEP will also feature real-time monitoring, and could eventually include color and multi-material 3D printing. Other possibilities for the technology include the ability to print with multiple materials and colors.

Alpha machines are already in the field and beta machines will be shipped in 2019, followed by full commercialization in 2020.


While it might not be quite as big as GE in terms of revenue or number of employees, the world’s largest chemical company, BASF, has continued to grow in the 3D printing space. This year saw the company make a number of moves in the industry, from investing $25 million in Materialise to acquiring two material manufacturers.

The Materialise deal will see the German chemical giant lend its expertise in material development to the 3D printing software maker and service provider. In return, Materialise can provide its knowledge of AM systems. And because BASF is connected to very large manufacturers, Materialise may gain greater access to that customer base. Altogether, this should increase the adoption of 3D printing overall.

Meanwhile, the acquisition of Advanc3D Materials and Setup Performance SA will give BASF more selective laser sintering powders, as Advanc3D works with Setup Performance to produce those materials.

BASF also participated in the development of BigRep’s new MXT Extrusion Technology, which separates filament feeding to the extruder and the actual extrusion itself, resulting in greater printing speeds.

Additionally, BASF has signed a deal with UK-based Photocentric, one of the few photopolymer resin manufacturers to develop large-scale resin-based 3D printing technology. Uniquely, Photocentric has developed materials that are curable when exposed to white light. The systems to be developed with Photocentric will have large build volumes and will 3D print materials using HDTVs and/or mobile phone screens laid out in a single build platform.

BASF is also working with Origin, discussed in greater detail below, to create materials that will work with the company’s new mass 3D printing platform.


Origin emerged from stealth at this year’s formnext event, where attendees were given only a taste of what was to come. In an exclusive interview with engineering.com, Origin CEO Chris Prucha went into more detail about how the company’s programmable photopolymerization (P3) technology works.

A previously unpublished sneak peek of Origin’s unique 3D printing process. (Image courtesy of Origin.)

A previously unpublished sneak peek of Origin’s unique 3D printing process. (Image courtesy of Origin.)

P3 does not rely on oxygen for 3D printing photopolymer materials, opening the process up to a wider variety of materials, including polyolefins. Through an open material API, Origin believes that more material makers will be able to develop plastics that work with the P3 process.

The system, which will be showcased at RAPID 2019, is modular, which means that multiple printing units can be connected using the company’s magnetic kinematic system to create a fleet. It also means that new hardware modules can be added, such as those that may be devoted to quality control, automation or post-processing.

Digital Alloys

Boston-based Digital Alloys has received $17.9 million in funding to develop a new form of metal 3D printing that is faster, less expensive, and more reliable than traditional metal 3D printing systems. The startup dubs its process “joule 3D printing,” which uses resistive heating to melt inexpensive, widely available metal wire.

A close-up of the joule 3D printing process. (Image courtesy of Digital Alloys.)

A close-up of the joule 3D printing process. (Image courtesy of Digital Alloys.)

Because during this process the current is inside the wire, where it is heated from within, the wire is heated instantly at a low power, speeding up the printing process. At the same time, it’s possible to enact closed-loop control because the amount of power being used to heat the wire is easily determined with a built-in electric circuit. This, in addition to the precision wire feed system, allows the system to know exactly how much energy is used to deposit how much material.

Other benefits include the ability to print objects with 99.5 percent density or greater; fine detail that is dependent on the diameter of the wire used, ranging from 250 microns to 1mm; and the ability to print 45-degree overhangs without supports.


Where Digital Alloys has swapped out the powder bed for a technology that is more easily controllable, Velo3D has opted to learn how to control every variable in powder bed fusion with ultimate precision. The company has developed what it calls “Intelligent Fusion,” which combines software and hardware to reliably and repeatably print objects that require almost no support structures.

This part, a shrouded impeller that was 3D printed using Velo3D’s technology, has not been post-processed. These low angles are impossible to achieve without support structures when using traditional PBF processes. (Image courtesy of Velo3D.)
This part, a shrouded impeller that was 3D printed using Velo3D’s technology, has not been post-processed. These low angles are impossible to achieve without support structures when using traditional PBF processes. (Image courtesy of Velo3D.)

Velo3D’s Flow software first pre-distorts a CAD file to compensate for deformation that will occur during the print process, kicking first print success rates up to 90 percent and reducing support volume by 3 to 5 times. When these files are printed on the company’s Sapphire 3D printer, reliability and repeatability are ensured through active closed-loop control. As the print is being performed, the system accounts for variability and continually adjusts the print parameters to provide a stable print environment.

Also necessary to account for the many variables within the print chamber are the ability to precisely control the oxygen levels and a “zero contact” recoater, which prevents metal powder particles from being disturbed during the printing process.

Deduce what you will from all of these stories from 2018, but one thing that is clear is that mass manufacturing with 3D printing is becoming a reality. While 2017 saw companies already beginning to use HP’s MJF to mass produce parts, we can now see that HP won’t be alone in the business when it comes to 3D printing either plastics or metal. A slew of new companies have joined the race to transform 3D printing and, therefore, manufacturing as a whole.


My partner and I approached David at Re3dtech with our project and were greeted with kind and caring service. Throughout the last couple of months we have placed several orders in varying size and were even able to sit down with David and the owner to discuss our needs as a small business. Through this sit down we saw their passion for assisting both small and large clients in achieving their goals. We even had a hiccup with a batch of prints that was immediately addressed and remedied with precision and care. I almost don't want to recommend these guys because I feel like I have stumbled upon a hidden gem in 3D printing services and selfishly want to keep it to myself. Jokes aside we will be continuing our business relationship with the folks there and look forward to growing our order quantities and business with their help.
Re3DTech was instrumental in helping us get our product, Stroba™, to market faster! We needed a technology that could do snap fits and looks and feels as close the injection molded part as possible, and Re3D Tech was there for us. We used SOLIDWORKS Make to get in touch originally, upload models directly, and sign an NDA directly with their excellent team. It was really simple and easy to use their quoting tool as well. Excellent prices, excellent lead times, and superior quality are perfect words to describe our experience with Re3DTech. We went through many prototypes for Stroba™, and we at Goodfriend Innovations™ use Re3DTech for our other rapid prototyping jobs to help get our additional productions out to market faster than the competition. 5 Stars
I provided RE3DTECH three laser scanned ".stl" files for 3-D printing of prototypes. I used their on-line quote and file delivery process. The file acceptance and resultant quote were returned quickly. The parts were received at the quoted time. The parts are quite complex with many holes, angles, curvatures and notches. Each of the parts came out identical to the scanned parts dimensionally and passed the form/fit/function test in the upper level assembly. RE3DTECH has a high quality business process and produces high quality products. I will use them for future prototyping projects and recommend RE3DTECH.
Re3dtech is one of the most honest and reputable companies we have done business with. We decided to look into options for getting parts made in the USA for the retail market. It was awesome to find a local company with humble staff looking to provide their services meeting our criteria, not to mention meeting the Re3tech crew face to face and checking out their operation. Peter was very honest, knowledgable about design. Peter's creative element made working with him a great pleasure. Jim's flexibility was a breath of fresh air and greatly appreciated. CentralSound is proud to scratch the surface with Made in the USA parts in the retail market now, thanks to Re3dtech. Hope to do more business with them in the future.
Re3dtech has consistently delivered the best service I have ever received in the industry. Their response time is unmatched and they always stand by their parts and quality. They regularly make me look like an all star at my job.
It is always a pleasure to have a vendor that provides quality, experience, and always shows as much care for your order, and your product as you do!